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Force constants of dimethylmercury are calculated using the vibrational 
fkequencies of gaseous (CH,),Hg and (CDs)sHg. A force constant calculation 
utilizing the generaiised inverse matrix procedure is discussed briefly. Assum~g 
a free rotational model, the force field is introduced as a trigonometrical func- 
tion of the torsional angle y; the time variant corrections of vibrational fre- 
quencies and normal coordinate vectors which this involves are investigated. 

Introduction 

Vibrational spectra of dimethylmercury [I-U] and perdeuteriodimethyl- 
mercury [9--111 have been studied from time to time. Structural studies by 
electron diffraction [X2,13] and high resolution pure rotational Raman spec- 
troscopy 1141 suggest a linear C-Hg-C structure, and from. the vibrational 
spectroscopic behaviour free internal rotation is assumed to occur [4,9- 
11,151. 

Calculation of force constants for dimethylmercury was first reported by. 
Gutowsky 141, using a simplified potential energy function. A modified Urey- 
Bradley potential function was employed by Kittila 1161 to carry out a least 
squares fit of the calculated to the observed frequencies. A similar c&lculation 
was carried out by Miles et al. [I?], who also discussed the variation of the 
force constants. Quite recently Bribes and Gauties [IS], and’Bakke [X9] also 
used the frequencies of perdeuteriated dimethylmercury in a further study with 
a relatively simplified force field. . . 1. 

We were part+xkrly interested in fir&her investigating vibratickal- co& 
piing across the heavy atom and the consequences of the very low barrier to 



internal rotation of the methyl groups. In the calculations presented here we 
have t&d to determine a more complete force field,- u@ng..a.modified forces 
con&ants~refinement procedure, and we have in$estigated the effects of a slight. 
dependence of the force constqnts bn the torsional angle y. 

TABLE1 

INTERNAL VALENCE SYMMETRY COORDINATES OF DIMETHYLtiERCURY 

Species coordinate 

AN Sl 

S2 

S3 

S7b 

%b 

s9, 

s9b 

SlQ 

SlOb 

Eg SIIa 

Sllb 

S12a 

= $(r2-‘3+ ‘5-n-6) 
1 

= <&)i (~~I-cQ-cx~+ Zrr4--p5--o6) 

= f (cq-Q3 + p5-“6) 

: 
7 (~.)=(2~1-~2-~3+ 2fl4--&--P6) 

=_:(Pt--P3+Ps--P6) 

=E 

, 
=E 

= (s) (Zrl-r2-r3-2r4 + rg +r6) 

= $(r2-r3-5 + ‘6) 
I 

S12b = +(a2-~3-CX5 + a6) 

L 
Slk .= (~)*(~P~-Pz-B~-~P~.+Ps+P~) ‘. 

S13b = +(@2--P3---P5 + ‘36) 

a’zt denotes C&1; i.e. over coordinates in the top: Zf denotes E&..i.e. over coordinates in the frame. bin 
all terms mzlating to the coordinates $2 @S6 extra factoti.(P+(a) and (P-Q) were in@uded: these arise 

in&moving the ~~I$uu%I&~ for slightly distorted tetrahedral angles. where: P= 
l+K 

.ti= 
1-K 

<2+2K2@ (2+2@)45 I’ 

andK= sin @ x cos @ [25.2E]. 
:sina~.- : .- 
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Fig. 1. The internal coordinates of dimethylmercury- 

Calculation of force constants 

The correct symmetry group for freely rotating Hg(CH3 )2 and Hg(CDa )2 
is the Gse group, introduced by Longuet-Higgins [20] in the form of the 
double group G&, which was later proposed by Hougen 121,223 and Bunker 
[23] for dimethylacetylene. The nearly free internal rotation means that the 
normal coordinates are functions of the torsional angle y, and this introduces 
some difficulties into the calculations. Although the symmetry coordinates can 
be chosen in such a way that the elements of the G matrix are completely 
independent of y and the elements of the F matrix depend but slightly on it 
1241, the solution of the inverse vibrational problem, which involves tirne- 
variant force constants, is not convenient from the computational point of 
view. We shall therefore first determine the force field for the Hg(CHs), mole- 
cule on the assumption that the force constants are. not dependent on the 
torsional angle. 

It is not difficult to demonstrate’ that the force fields for the various 
equilibrium geometries 0s d, Da h, Dkh or Gzs are effectiveIy equivalent and, 
conversely, that the calculated. frequencies are practically independent of the 
chosen configuration. For this reason the D sd point group and the internal 
valence symmetry coordinates presented in Table 1 were adopted; these inter: 
nal coordinates are also shown in Fig. 1. Exact molecular geometry (slightly 
distorted tetrahedral angles) was considered throughout the calculations; The 
equilibrium interatomic distances and valence angles are summarised in Table 2. 
The-kinetic energy matrix was found with a computer program described else- 
where 1271: 

TABLE 2 .. 

MOLECULAR GEOMETRY= 

r,<CH) = l.O9i% L (HCH) = lOS”lS’ 
re(CHg) = 2.094 ik L (HCHg) = 109”38’ 

L (CHgC) = 180° 

%ef. [143. 
: 



TABLEti_ . . 

.FORCECONSTANTS OFDIhiETHYLMERCURYCOMPUTEDBYLEASTSQUARESFITINT~RMS 
OFS~~METRYCOORDMA'?ES(UNITSAREmdyn/A) 

._Sp&cies' Forcecthstant Bribes-and Bakke Cl91 Thiswork.FinaIset. 
Gaufres[lSJ 

*1g =11 4.971 4.870 4.771 
F12 -0.172 0 -0.293 
F13 0 -0.131 
F22 0.351 z-322 0.382 
F23 0 0 -0.175 
F33 2.380 2.460 2.409 

-42~ F44 4.971 4.840 4.771 
F4s - 0.172 0 -0.293 
F46 0 0 -0.131 
Fss 0.363 0.330 0.382 
F56 0 0 -0.097 
F66 2.243 2.550 2.348 

% F77 4.747 4.600 4.723 
F78 -0.006 
F79 : 0" 0.055 
F88 0.438 0.481 0.433 
F89 0 q-025 0.041 
J%g 0.366 0.354 0.388 
F101o 0.405 0.377 0.382 

% F1111 4.747 4.600 4.723 
F1112 0 0 -0.006 
F1113 0 0 0.005 
F1212 0.438 0;462 0.433 

:. F1213 0 -0.025 0.041 
=1313 0.284 0.283 0.285 

For dimethylmercury 26 experimental frequencies are available for the 
two isotopic species, but no more than 16 force constants could be accurately 
fixed. AU the infrared active. fundamental frequencies except v1 o, (which was 
taken from the literature [ S;lOl ) were measured in the high-resolution infrared 
sp&ra‘ of g&eous saniples [ 111 iyhjle some of the infrared inactive frequencies 
(viz. ~2, ~3,.~12 and v13) were calculated from combination tones and over- 
tones observed in the infrared spectra of gaseous samples [ll] ; the remaining 
Y,.and v,, fundamentals were assumed equal to v4 and v7 respectively_ 
Very g_ood-__agreements were found betieen theoretical and experimental values 
of _.the T@lee&dlich products.: The initial -force .field was constructed using 
the res$ts of .BGbes and Gaufres [18] and Bakke [ 191, but the final set. was 
practically-. independent of the initial force field. The force constant calculation 
method is discussed belcw. 
s .The, .Converged values of force constants are .&en m terms of symme&y 
do&in&es in -Table 3; where they .are compared with the- results. of .earh.er 
caiculations-[l&191. The agreement is quite good. The observed and calculated 
frequencies,- with their deviations (in %), and in the transposed L matrices for 
Hg(CHs)2 and Hg(CD3-)a amcohected in Tables 4 and 5 respectively_ Because 
of. the weak vibrational coupljng of _two methyl groups, L’ matrices show close 
similar$tyfor theA,l,, Aau and E, ,E, pairs of symmetry, blocks. 1. .: : 

The. transformation equations between symm&ry ccordinate and ‘int&aJ 
co.ordin&e’ force. constams are presented in Table.6. The‘internal valence force 

‘(~ontinued~on~~_& 
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If th& matrix %VJ is nearly singular, however, a stable solution cannot be 
.exp&ted.‘- ‘. 

The. .method applied in this paper, which ‘was described in detail in a 
previous paper f28] ? removes the singularity difficulties by applying the gener- 
alized inverse .[ 301 of the Jacobian matrix J and takes into account its rank. 
ThemXn(m>n)matrixJIV= W” J is written in the following decomposi- 

-t-ion forin [ 311 : 

Jw =Kznv (2) 
where Z;n is an n X n diagonal matrix the elesents oic_of which are the non-- 
negative square roots of the eigenvalues of JrvJw = JWJ and are called the 
singular values of Jlv. The matrices U and V, both of which satisfy equat&n(3), 
are the eigenvector matrices of the eigenvalue problems of matrices JW JW c+md 

&J= vV= vv=E, (3) 

&J,,, respectively, and can be obtained [31] without solving the eigenvalue 
problems. 

If the matrix ZwJlv is ill-conditioned, then one or more o‘i will be very 
small in comparison with the others. Assuming that the oi values are arranged 
in descending order and replacing the relatively small o,, 1, a,, 2 -, --, 
O, (p < n) by- zero, which is equivalent to perturbing Jzy by a matrix whose 
Fkobenius norm 1321 is (Z~~P+l~~)~, we obtain the matrix: 

(4) 

(CU = CV = EP ) the condition of which is sufficiently good to make conver- 
gence certain. In this case an approximation of the generalised inverse 1321 of 
Jw is: 

s+ 
W =vqa (5) 

with. LX=;: = diag (Oil, -a-, ugl), 
the su@ of %r is: 

and the minimal least squares solution [ 33) of 

Af-7 cf> Av, 

where Au, = W’” Au. 

(6) 

The following notations are used: u, u for vectors uand u; A, B for matrices A 
and 23; and x;g for the transposes of matrices A and B, 

Investigation of the effect of y-dependent force field 

~ ,The set .df force constants of dimethylmercury determined above Was 
obtained for the, point group Dsd. In order to satisfy the experimentally 
observed frequency splittings between -in-phase (Al g and Es) and out-of-phase 

(A.2 u and .R, ) methyl species, viz. between the pairs of modes (vs, &), (vs, 
~12.1 and- (es ~131, 
f;tp=-0.032 and f’ 

the small interaction force constants fkR =. 0.031, 
pp = .O.O51 (all mdyn/W) were introdutied, the values of which 

w&e found in terms of internal coordinates .(see Table ‘7). The .first two of 



TABLE7 ., 

THE FoRcE~commwrs= OFDIMET~LMERCIJRYININTERNALCOORDINATEREPRESENTA- 
TION 

- 

fr 4.739 

$R 
0.016 
2.379 

fFF 
0.031 

-0.075 

fra 0.006 
fra’ 

$1 
8179 
Ok24 

f&l! 0 

;g; 
0.111 
0.032 

f& 0.433 

fcm 0 

gh 

0.260 
-0.057 

;? 

-0.041 
0 
0.362 

fsp 0.051 

=Notes: see Table.. 

these constants (which were included in the species Al g and Azu ) only are not, 
from symmetry considerations, greatly dependent on the torsional angle 7, but 
the third, which is the top frame rock-rock interaction force constant, can 
exhibit fluctuations as 7 is varied. Since the very strong splitting of the two 
degenerate rocking vibrations (about 90 cm- ’ ) shows that rock-rock coupling 
between two methyl groups must be the strongest, and as the hydrogen dis- 
placements in this vibrational mode are directed against each other the ‘y-depen- 
dence of the ug, v13 pair seems reasonable on physical grounds. We shall 
investigate in detail only this interaction force constant. 

Let us express the force field of the rock-rock interaction in terms of the 
internal coordinate representation: 

& dl & d3 

P2 d3 dl dz 

~3 d2 & dl 

where dl, da and ds are functions of 7 and are interconvertible during the 
rotation of methyl groups. After the symmetry transformation, we have _for the 
symmetry species: 

Al&W : &2 =F22 +%(dl +d, +d,) 

-%(d, +d, +d,) A&A,) : F& = 3’55 

(W 

E,(jq,) : FL_ = fp-fpp + Cd, --“I(+ +d,)l 

E,(E,&) : F;313 = fa - fbp -r[d, --h(d, +.d,il 
(7b) 



tlie _&ticketed sp&cies of point groups G+ 36 and F22 and F5s are taken from 
Table:& When the.ry-dependence of dj elements, in accordance with Howard’s 
determination [34] has the form: 

d, =kcos6y 

d, = -k cos (67 - 7r/3) (8) 
d, =.-k cos (67 + n/3) 

we find that 

kd,=O 
i=l 

(9) 

while the fi; p force constants 
have the form (see Table 6): 

of rock-rock interactions in degenerate species 

fia = d, - *A(& + d, ) (16) 

This means that we may consider the interaction force constants di to exhibit 
fluctuations as 7 is varied in time but their sum remains equal to zero. We can 
therefore treat the r-dependent corrections to Fb a and F; s r s as a non-vanish- 
ing interaction term in the degenerate symmetry species only. Equation (7b) 
then becomes: 

FL3 =.F”99 + 3/2 k cos 67 

F 1313 = E101313 - 3/2 k cos 67 
(11) 

where F& = FT31 3 = fp - fps 
This T-dependence of the F’ 9 9 and F; 3 r 3 force constants for the degener- 

ate symmetry species has the same form as that proposed by Howard 1343 and 
is very similar to the dependence obtained by Bunker and Hougen 124) in their 
hypothetical force field for dimethylacetylene. 

TJsing the results of our force field calculation, we can express functions 
(8) and (II) in numerical form. For the fixed staggered configuration, when 
y = 30”, we have: 

f& = 3/2 k cos 67 = 0.051 

TC%e d,; tie given by: 
:$; & 0.034 cos 6y 

d, = -0.034 cos (6y 7 x/3) 

‘d; = -6.034 cos (6y t 7r/3) 

and Fe, and-F,,,,.by: 

‘kg; . . =.!.33?.+ 0.051 cos ST._. 

Fs3.13 = 0.337 L’0.051-cos Sr (ah in mdyn/A ) 

(12) 

(13) 
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743a 

6 9 12 15 18 21 2~ 27 30 
SKEW S TAGGEREL- 

TORSfOkXL ANGLE b IN DEGREES 

Fig. 2. The y-dependence of me&l rocking (vs. ~131 end methyl deformation <vs. ~12) dewierate 
frequency pairs using the force field given by eun. <13). 

Normal coordinate calculations were performed with the set of force constants 
given in Table 3, in which the y-dependent terms are adde@ to the elements 
Fg9 andF,s,s given by eqn. (13). 

From‘ diagonalizing the FG matrix for many values of 7 (from 0 to 39” in 
3” steps), we can determine how the h and L matrices vary with torsion. It was 
observed that not only do the vg and y1 3 normal modes vary greatly with 7 but 
the methyl deformation frequency pair v8 ‘and v1 2 a$ well, although the re- 
maining frequencies of degenerate mopes are only very slightly sensitive to the 
r-dependent force field. The way in which these frequency pairs depend on the 
torsional angle is presented in Fig. 2. Intersection of vibrational frequencies 
near 7 = 15” is observed for every frequency pair of two degenerate species. 

On the analogy of dimethylacetylene 1241 another set of force constants 
was investigated: 

F = 93 0.337 + 0.051 cos 67 

F = 913 0.025 sin 67 (14) 

F = 1313 0.337 -0.051 cos 67 (all in n&n/A) 

Here a T-dependent cross term 8’s 13 1s added to the.force field; when this term 
is present, the frequency pairs z+, v1.3 and v8, VI 2 do not show the-above 
cosinusoidal dependence on the Xorsional angle 7; the actual dependence is 
plotted in Fig. 3. The influence exerted by the small force constant Fsl 3 
clearly prevents k&?rsection of the curves for the calculated frequency p$rs in 
the region .where this would be expected (viz. .where.the pairs,of. vibratickal 
freque+$es are .very close to each other). -The_ extremum. of the curves, how- 
ever, is found to occur near 7 = 15” f the frequency difference between yg. &d 
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F& 3. The r-dependence of methyl rocking (vg. ~13) and methyl deformation W3. 1921 degenerate 
frequency pairs using the force field given by eqn. (14). 

v1 3. was established as about 53.5 cm-’ and that between vs and v12 as 4.5 
cm -l. With values of the coefficient of sin 6y smaller than 0.025 the maxi- 
mum and minimum of vg and ZJ~ s would be neaky equal. 

The. variation of -the L matrix with torsional angle was investigated by 
~de~ermining~ the eigenvectors of the FG matrix for the hypothetical force fields 
established by eqns. (13) and (14). Using the force field of eqn. (13) in the L 

&. 4. C%&&te&tic f&tioxis6f eigenvekor matrix element! 
field given. <a) bu eqk. (13% and(b) by eqn. (14). 

the torsional ankle 7 using _thti force 
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matrix, about ten matrix elements were found which vary strongly with 7. The 
nature of this dependence, which is very similti to that found for the vibmtion- 
al frequency pairs, can be seen for L e 9 and L1 a I a matrix eleme& in Fig. 4a. 
From this it can be concluded that when F9 1 s = 0, the normal --coordinates 
remain pure trans-type (Eld) or pure &-type (Ezd) vibrations for all values 
of y. 

The eigenvector matrix exhibits a more complicated behavior& if the force 
field of eqn. (14) is considered; all the out-of-block diagonal matrix .elements 
show a considerable dependence on the torsional angle. In the plotted depen- 
dences for the Lee and L9 I 3 matrix elements (Fig. 4b), the curves interseCt 
near y = 15”. Evidently, when the molecule is near to the eclipsed or staggered 
position the normal coordinates involve largely &-type (E,,) and trans-type 
(J?&) vibrational coordinates, respectively, whereas in the crossover region 
they involve mixed El d and E2 d symmetry coordinates.. 

From these results the following conclusions may be drawn. Equations 
(13 j and (14) require a considerably stronger T-dependence of the force field 
for dimethylmercury than that used for dimethylacetylene; the observed ef- 
fects are, in fact, similar to those for CH,-C=C-CH, by Bunker and Hougen 
[24]. The y-dependent force constants can be introduced using a rock-rock 
interaction force constant obtained by force constant calculation. 

As would be expected from the very strong coupling of rocking modes 
with the other methyl vibrations, the observed perturbing effect of the T- 
dependent force field is not restricted to the vibrational pair ye, v13 alone; 
other frequencies and normal coordinates also exhibit a considerable sensitivity 
to y. The introduction of the F 9 1 a cross-interaction force constant [eqn. (14)1 
has a fairly strong perturbing effect on the frequencies and normal coordinates 
within the two degenerate symmetry species. 

The introduction of a r-dependent force field requires time-variant correc- 
tions of L and A. It would be particularly interesting to establish how the 
magnitudes of Coriolis coupling the mean square amplitudes and the calculated 
vibrational intensities are influenced by the application of time-variant force 
fields. 
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