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Summary

Force constants of dimethylmercury are calculated using the vibrational
frequencies of gaseous (CHj),Hg and (CD3),Hg. A force constant calculation
utilizing the generalised inverse matrix procedure is discussed briefly. Assuming
a free rotational model, the force field is introduced as a trigonometrical func-
tion of the forsional angle «y; the time variant corrections of vibrational fre-
quencies and normal coordinate vectors which this involves are investigated.

Introduction

Vibrational spectra of dimethylmercury [1—11] and perdeuteriodimethyl-
mercury [9—11] have been studied from time to time. Structural studies by
electron diffraction [12,13] and high resolution pure rotational Raman spec-
troscopy [14] suggest a linear C—Hg—C structure, and from the vibrational
spectroscopic behavmur free internal rotation is assumed to occur [4,9—
11,15]3.

Calculation of force counstants for dunethylmercury was first reported by
Gutowsky [4], using a simplified potential energy function. A modified Urey—
Bradley potential function was employed by Kittila [16] to carry out a least
squares fit of the calculated to the observed frequencies. A similar calculation
was carried out by Miles et al. {17], who also discussed the variation of the
force constants. Quite recently Bribes and Gaufres {18], and Bakke [19] also
used the frequencies of perdeuteriated dimethylmercury in a furthet study with
arelatively simplified force field. '

- We were particularly interested in further mvestlgatmg wbratlonal cou-
pling across the heavy atom and the consequences of the very low barrier to
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mtemal rotation of the ~methyl groups. In the calculations presented here we-
‘have tned to determine a more complete force field, using.a modified force
constants refinement procedure, and we have mvestlgated the effects of a slight:
dependence of the force constants on the torsional angle 7.

TABLE 1
INTERNAL VALENCE SYMMETRY COORDINATES OF DIMETHYLMERCURY

Species Coordinate

Alg S = _16')?(“!"1*' Err i
S, = 1‘3)lz [(PRUZ o+ Zpa))— (P + Q)X 5;+ Efﬁj)lb
S3 = (%)%(Rl +R5)
A2y Sa = (%)Ji(zgr,"—ﬁf 7
Ss = (—‘2 Y LP—Q)(E 07— Eftj)- (P + @) ;L £6))]
S¢ = (5)2(31—32)
Ey S72 = (lz)‘ (2ry—ry—r3+ 2rq—rs—rg)
Sy = = 32— r3+rs—rg
Sga = -% _; Y (2o —ay—a3+ 2og—as—ag)
Sgp - = %(ozz—a3+oz5-—a6)
Sga = ) *(281—B2— B3+ 2B3—Bs— L)
"So9p =%(ﬁz*ﬁ3+ﬂ5—ﬁ5)
Si0a =€
Sjop =€
Eg ‘S1a = (i!z‘)%(zrr“rz—r3—2r4+r5 +rg)

Stip =5{ra—r3—rstrg)
l
1
© 8124 = -2) (2ay—a;—a3— 2a4 +as +ag)
1 .
_,Slzb =“z‘(az—f¥3—f¥s+&6)

’S|3a =(xz) (281—B2—B3— 204+ Bs +Be)

s 13b 'li(ﬁz‘“ﬁs-“ﬁs + Ba)

aX; denotes 2‘.,_, 1. i.e; over coordinates in the top: X f denotes EZ j=4.i.e. over coordinates in the frame. byn
all terms relatmg ‘to the coordxnates Sz and 86 extx-a factors (P+Q) and (P-Q) were included: these arise
14K - 1—K

(2+2K2)%' Q" @raxh%

i re.rnovmg ‘the redundancy t‘or shghtly distorted tetrahed.ra! angles. where: P=

x
and x,-ﬂc—mﬁ 28,261
R oo - .



Fig. 1. The internal coordinates of dimethylmercury.

Calculation of force constants

The correct symmetry group for freely rotating Hg(CHj3 ), and Hg(CDj3),
is the G3¢ group, introduced by Longuet-Higgins [20] in the form of the
double group G3g, which was later proposed by Hougen [21,22] and Bunker
[23] for dimethylacetylene. The nearly free internal rotation means that the
normal coordinates are functions of the torsional angle v, and this introduces
some difficulties into the calculations. Although the symmetry coordinates can
be chosen in such a way that the elements of the G matrix are completely
independent of 7y and the elements of the ¥ matrix depend but slightly on it
[24], the solution of the inverse vibrational problem, which mvolves time-
variant force constants, is not convenient from the computational point of
view. We shall therefore first determine the force field for the Hg(CHj3 ), mole-
cule on the assumption that the force constants are not dependent on the
torsional angle.

It is not difficult to demonstrate that the force fields for the various
equilibrium geometries D34, Day, Dj; or Gig are effectively equivalent and,
conversely, that the calculated frequencies are practically independent of the
chosen configuration. For this reason the D3, point group and the internal
valence symmetry coordinates presented in Table 1 were adopted; these inter-
nal coordinates are also shown in Fig. 1. Exact molecular geometry (slightly
distorted tetrahedral angles) was considered throughout the calculations. The:
equilibrium interatomic distances and valence angles are summansed in Table 2.
The kinetic energy matnx was found with a computer program descnbed else-
where [27 ]

TABLE 2.
MOLECULAR GEOMETRYS E

re(CH) = 1.09A 2 (HCH) = 109 18" -
re(CHg) 2 094 K ..L (HCHg) = 109° 33
- L(CHgC)=180°

GRef. [14].
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-~ TABLE. 3

;. FORCE CONSTANTS OF- DIMETHYLMERCURY COMPUTED BY LEAST SQUARES FIT IN TERMS
‘OF SYMMETRY COORDINATES (UNITS ARE mdyn/A) . . -

.Specxes Lo Force constant - Bribes and : Bakke [191 - 'This worlk, Fina.l'set.
- - ) Gaufres [18] :
A1g F1: 4.971 4.870 4.771
: : F12 : —0.172 0 —0.293
Fiz . 0 o —0.131
Fag 0.351 0.322 0.382
Fag : 0 o -0.175
) - F33 2.380 2.460 ) 2.409
A2u - Faq 4971 4.840 4,771
- Fas —0.172 0 —~0.293
"Fae 1) 4] ~0.131
Fgs 0.363 0.330 0.382
Fge 0 0 ~0.097
Fe6 2,243 2.550 2.348
Ey Fqq 4.747 4.600 4.723
Fag 0 (¢} —0.006
Fq9 o o 0.055
Fgg 0.438 0.481 i 0.433
Fgo 0 =0.025 0.041
Fgg 0.366 0.354 0.388
Fio10 : 0.405 .0.3717 0.382
Eg Fy111 4.747 4.600 4,723
R - Fi1312 : 0 . [} : —0.006
Fi1113 . 4 i o - 0.005
Fi212 0.438 0.462 ’ 0.433
Fi1213 o —0.025 "0.041
Fi1313 0.284 0.283 o 0,285

. For d1methy1mercury 26 experimental frequencies are available for.the
two isotopic species, but no more than 16 force constants could be accurately
_ fixed. All the infrared active fundamental frequencies except v, o, (Which was
taken from the literature [8,10]) were measured in the high-resolution infrared
spectra of gaseous samples [11] while some of the infrared inactive ﬁ:equencres
(viz. Vs, vs, V12 and 2, 3) were calculated from combination tones and over-
tones observed in the infrared spectra of gaseous samples [11]; the remaining
v, and v,, fundamentals were assumed equal to v, and », respectively.
Very good agreements were found between theoretical and experimental values
of the Teller—Redlich products. The initial force field was constructed using
‘the results of Bribes and Gaufres [18] and Bakke {191], but the final set was
practrcally mdependent ‘of the m1t1a1 force fleld The force constant ca.lculatlon
: method is discussed below. -

- The converged ‘values of force constants are glven in terms of symmetry.
: coordmates in -‘Table 3, where they are compared with the results of earlier
" calculations [18,19]. The agreement is quite good. The observed and calculated
frequencies, with their deviations (in %), and in the transposed L matrices for
Hg(CH3). and. ‘Hg(CD3), are collected in Tables 4 and 5 respectively. Because
of the Weak ‘vibrational coupling of two methyl groups, L’ ‘matrices show close

similarity for the Alg, A,y and Eg, E, pairs of symmetry. blocks. . - L
-The transformation -equations between symmetry coordmate and mternal
: coordmate force constants are presented in. Table 6. The internal valence force :

) (contmued onp 7) ’
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TABLE 6

RELATION“ BETWEEN SYMMETRY COORDINATE AND INTERNAL COORDINATE FORCE CON-
STANTS FOR THE Hg(CH3)z AND Hg(CD3)2 . - : .

Spbecies

Ay - Fn "fr""zrrr
Fi3 = LN ZEP— Q) frar 2r)— B+ @+ 20 ©
Fi3 = \/3er
Faz = 20P—Q) (ot 2lpa)* P+Q) (fg+2fgg)—2(P2“Qz)(faﬁ'+2faﬁ“
Fa3  =+/3n/21P— Q)rga—(P+Q)fR‘3—(p+Q)fRB]

, F33 =fR*TRR
A2u Faa =Fn
- Fas =Fy2

Fae =Fi3
Fs5 =Fa2
Fse =+/3N20¢P—Q)fpe—(P+Q)frg+(P+Q)Rgl
Fe¢ =fr—TRR

Ey Fr1 =TI
F78 = fm'—fm
Fiq9 =fpg—1ig
Fqno = Fgio=Fo10=0
Fgs =Tfafoaa
Fgo =Tfop—fap
Fgo  =fg—1fpa*Tpp
Figio =fe

Eg Fun =F77
Fi112 =F1g
Fiuz =Fqe
Fy212 = Fgg
Fi1213 = Fg9

Fia13 =fg—1fpg— 788

“Nofes: all symbols refer to.Mills {25] and Duncan [26] notations; f' interaction force constants relatihg
the two methyl groups. bp and @ see Table 2,

constants determined using these expressions are given in Table 7. On the
analogy of the work of Mills [25] and Duncan [26] on CH3X molecules, some
of the valence force constants (Viz. fia, fRas fae @0d fyg) Were assumed equal
to zero. The value of 2.379 mdyn/A obtained for the CHg stretching force
constant falls in the range of previously calculated values (mdyn/A): 2.311
[18], 2.45 [8,161], 2.50 [19] and 2.58 [17]. '

Force constant reﬁnement procedure

The basic problem faced in force constant calculations is the need to-
determine an: ad]ustment vector Af which minimizes the sum of the weighted .
squares of residuals ¥ Wr, where r = Ay — JAf (J is the Jacobian matrix and Avis
the  difference between:the experimental and calculated frequencies). In-the

“classical”® procedure [29] Af is- obta.lned from a-linearised set of: normal
equatlons

(JWJ) Af= JWAV ()



If- the matnx JWJ is nearly ‘singular, however a stable solut1on cannot be
,'_expected a

- The method apphed in this paper, Whlch was descnbed in deta:l ina
' prevmus paper- [28], removes the smgulanty difficulties by applying the gener-
alized inverse [30] of the Jdcobian matrix J and takes into account its rank.
The mX n (m > n) matrix JW = W J is written in the followmg decomposi-
-tion form [31]

J UZ v o ” (2)
where E,, isannXn dlagonal matrix the elements o; of wh1ch are the non--
negative square roots of the eigenvalues of JW Jy = JWJ and are called the

singular values of Jy,. The matrices U and V, both of which satisfy equation(3),
are the eigenvector matrices of the eigenvalue problems of matrices Jy Jy and

Tu=Vv=vV=E, ' (3)

JWJW, respectively, and can be obtained [31] without solving the elgenvalue
problems.

If the matrix JWJW is ill-conditioned, then one or more o; will be very
small in comparison with the others. Assuming that the o; values are arranged
in descending order and replacing the relatively small 0,31, Opsa -, <,
0,(p < n) by zero, which is equwalent to perturbing J;; by a matrix whose
Frobenius norm [32] is (Z/_ .0} 2)*  we obtain the matrix:

Ty =UZ, ¥ 4)

(f'IU Vvs= E,) the condition of which is sufficiently good to make conver-
gence certain. In this case an approxmatlon of the generalised inverse [32] of
o, w is:

Fe, = verU (5)
with 27 = diag (07?, -, 05 1), and the minimal least squares solution [33] of
the sum of TWris: '

Af =Ty vy . _ : ' (6)
‘where Avy, = W% Ap. » '

The following notations are used: u, v for vectors 1 and v; A, B for matrices A
and B;and 4, B for the transposes of matrices A and B.

Investlgatlon of the effect of -y-dependent force field

The set of force constants of dlmethylmercury determmed above was
obta.med for- the. point” group D34. In order to satisfy the experimentally
observed frequency splittings between ‘in-phase (AlE and E_) and out-of-phase
(A2, and E,) methyl species, viz. between the pairs of modes (2, vs), (va,
¥13) and (vg, »;3), the small interaction force constants ' frp = 0.031,
fri 5 =0.032 and fzg = 0.051 (all mdyn/A) were introduced, the values of which
were" found in terms ‘of internal coordinates (see Table 7). The first two of



TABLE 7

'THE FORCE' cons'rAN'rsa OF DIMETHYLMERCURY IN INTERNAL COORDINATE REPRESENTA-
TION . . .

fr 4.739
fr 0.016
IRR 2.379
RR 0.031
er —0.075
fra 0.006
frod o
f, 0.179
f:g 0.124
TRa ]
e 0.111
frp 0.032
fo 0.433
Taa o
b 0.280
fp 8 —0.057
fﬁB —0.041
faf o
fe 0.382
faa 0.051

ANotes: see Table 6.

these constants (which were included in the species A; ; and 4,,,) only are not,
from symmetry considerations, greatly dependent on the torsional angle 7, but
the third, which is the top frame rock—rock interaction force constant, can
exhibit fluctuations as -y is varied. Since the very strong splitting of the two
degenerate rocking vibrations (about 90 cm™ 1) shows that rock—rock coupling
between two methyl groups must be the strongest, and as the hydrogen dis-
placements in this vibrational mode are directed against each other the y-depen-
dence of the vg, v;3 pair seems reasonable on physical grounds. We shall
investigate in detail only this interaction force constant.

Let us express the force field of the rock—rock interaction in terms of the
internal coordinate representation:

Bs Bs Be
By di do da
B d3 di dy
Ba do dy d

where d,, ds and dg are functions of v and are interconvertible during the
rotation of methyl groups. After the symmetry transformatmn we have for the
symmetry species:

Ag(Ag) 1 Fop = Fop +Y(d, +dy +d3)

. (7a)
Ay (Ay): F's‘,,_:F55 —%(d, +d, +d3)

E,(E1q):Fee =13l * 1y —~%(d2 +d3)]

- SO R (7b)
E (Eyq): Figia = fy— fyg—[dy —%ld, +dy)]
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the bracketed species of point groups Gi¢ and Fp, and Fgs are taken from
‘Table 6. When the v-dependence of d; elements, in accordance with Howard’
: determmatlon [34] has the form: : ,

d, = k cos 67 7 g
d, =—Fk cos (6y —7/3) ' (8)
d; =—k cos (6y + 7/3) '

we find that

3

25d;=0 (9)
i=1 : .
while the fgz force constants of rock—rock interactions in degenerate species
have the form (see Table 6):

féﬁ =d, —%(d, +dg) (10)

This means that we may consider the interaction force constants d; to exhibit
fluctuations as 7 is varied in time but their sum remains equal to zero. We can
therefore treat the 'y~dependent corrections to Fgg and Fy 3, 3 as a non-vanish-
ing interaction term in the degenerate symmetry spec1es only. Equation (7b)
then becomes: _ .

EQQ =Fgg + 3/2k cos 6y

: . _ (11)
.F;a_la =F:313 —3/2k cos 6y

where Fgq = Fyy;5 = fg— fgg

‘ This y-dependence of the Fy4 and F} 3, ;3 force constants for the degener-

ate symmetry species has the same form as that proposed by Howard [384] and
- is very similar to the dependence obtained by Bunker and Hougen [24} in their

hypothetical force fiela for dimethylacetylene.

Using the results of our force field calculation, we can express functions

'(8) and (11) in numerical form. For the fixed staggered conflguratlon, when

v= 30°, we have:

fBB = 3/3k cos 6'.)' 0.051

The d are glven by
= O 034 cos 6y ‘
=—0.034 cos (67— T/3) (12)
‘d = —0.034 cos (67 + 7/3) |
'and Fgg and Fyg;5 by:
f_Fg T 0 337+ 0.051 cos 67

‘F1313 =Q. 337 -0. 051 cos 6y (all in mdyn/A) ‘(\ 3)
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Fig. 2. The y-dependence of metﬁyl rocking (v9, vy3) and methyl deformation (vg, vy2) degenerate
frequency pairs using the force field given by eqn. (13). .

Normal coordinate calculations were performed with the set of force constants
given in Table 3, in which the <y-dependent terms are added to the elements
Fg9 and F 3,4 3 given by eqn. (13).

From diagonalizing the FG matrix for many values of v (from O to 30° in
3° steps), we can determine how the A and L matrices vary with torsion. It was
observed that not only do the vg and v; 3 normal modes vary greatly with vy but
the methyl deformation frequency pair vg and vy, a§ well, although the re-
maining frequencies of degenerate modes are only very slightly sensitive to the
v-dependent force field. The way in which these frequency pairs depend on the
torsional angle is presented in Fig. 2. Intersection of vibrational frequencies
near v = 15° is observed for every frequency pair of two degenerate species.

On the analogy of dimethylacetylene [24] another set of force constants
was investigated:

Fgq3 =0.337 +0.051 cos 6y _
Fg,q = 0.025 sin 6y ‘ ' (14)
Fi3:3 =0.337—0.051 cos 67 (all in mdyn/A)

Here a y-dependent cross term Fg, 3 1s added to the force field; when this term
is present, the frequency pairs vy, vy3 and vg, V1 do not show the-above
cosinusoidal dependence on the torsional angle v; the actual dependence is
_plotted 'in Fig. 3. The influence exerted by the small force constant Fg, 4
clearly prevents mtersectlon of the curves for the calculated frequency pairs in
the region where this would be expected (viz. where the pairs of vibrational-
_frequencies are very close to each other). The extremum.of the curves, how-
ever, is found to Qccur near 7y = 15° the frequency dlfference between vy and
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Fig. 3. The y-dependence of methyl rocking (vg, v13) and methyl deformation (vg, ;) degenerate
frequency pairs using the force field given by eqn, (14).

vy 3. was established as about 53.5 cm™ ! and that between vg and v, as 4.5
cm™ . With values of the coefficient of sin 6y smaller than 0.025 the maxi-
mum and minimum of vy and »; 3 would be nearly equal.

. The variation of the L matrix with torsional angle was investigated by
determining the eigenvectors of the FG matrix for the hypothetical force fields
established by egns. (13) and {14). Using the force field of eqn. (13) in the L

 VALUES OF { MATRIX ELEMENTS

SR B B I TEe I B oo 25
" Fig. 4. Chﬁéteﬁsﬁt’; ﬁhcﬁdﬁs-ﬁf eigenvector m'atrixl elements from the torsional angle v using the force
_ field given, (a) by 'eqn. (13), and'(b) by eqn. (14). - - : o

.
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matrix, about ten matrix elements were found which vary strongly w1th v-. The
nature of this dependence, which is very similar to that found for the vibration-
al frequency pairs, can be seen for Lgg and L1 a13 matrix elements in F1g 4a.
From this it can be concluded that when Fg;3 = 0, the normal - ‘coordinates
-remain pure frans-type (E,;) or pure cis-type (E,;) vibrations for all values
of . '

The eigenvector matrix exhibits a more complicated behaviour if th'e force
field of eqn. (14) is considered; all the out-of-block diagonal matrix elements-
show a considerable dependence on the torsional angle. In the plotted depen--
dences for the Lgg and Lg,3 matrix elements (Fig. 4b), the curves intersect .
near vy = 15°. Evidently, when the molecule is near to the eclipsed or staggered
position the normal coordinates involve largely czs—type (E,4) and trans-type
(E,,) vibrational coordinates, respectively, whereas in the crossover reglon
they involve mixed E, ; and E5, symmetry coordinates. .

From these results the following conclusions may be drawn. Equatlons
(13) and (14) require a considerably stronger vy-dependence of the force field
for dimethylmercury than that used for dimethylacetylene; the observed ef-
fects are, in fact, similar to those for CH;—C=C—CH, by Bunker and Hougen
[24]. The y-dependent force constants can be introduced using a rock—rock
interaction force constant obtained by force constant calculation.

As would be expected from the very strong coupling of rocking modes
with the other methyl vibrations, the observed perturbing effect of the -
dependent force field is not restricted to the vibrational pair ve, V43 alone;
other frequencies and normal coordinates also exhibit a considerable sensitivity
to <. The introduction of the Fg, 5 cross-interaction force constant [eqn. (14)]
has a fairly strong perturbing effect on the frequencies and normal coordinates
within the two degenerate symmetry species.

The introduction of a y-dependent force field requires tlme-vanant correc-
tions of L and A. It would be particularly interesting to establish how the
magnitudes of Coriolis coupling the mean square amplitudes and the calculated
vibrational intensities are influenced by the application of time-variant force
fields.
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